Oxidative in vitro metabolism of liquiritigenin, a bioactive compound isolated from the Chinese herbal selective estrogen beta-receptor agonist MF101.

نویسندگان

  • René Kupfer
  • Leah Swanson
  • Sylvia Chow
  • Richard E Staub
  • Yan Ling Zhang
  • Isaac Cohen
  • Uwe Christians
چکیده

Liquiritigenin [2,3-dihydro-7-hydroxy-2-(4-hydroxyphenyl)-(S)-4H-1-benzopyran-4-one] is one of the major active compounds of MF101, an herbal extract currently in clinical trials for the treatment of hot flashes and night sweats in postmenopausal women. MF101 is a selective estrogen receptor beta agonist but does not activate the estrogen receptor alpha. Incubation with pooled human liver microsomes yielded a single metabolite. Its structure was elucidated using tandem mass spectrometry in combination with analysis of the fragmentation patterns. The metabolite resulted from the loss of two hydrogens and rearrangement to the stable 7,4'-dihydroxyflavone. The structure was also confirmed by comparison with authentic standard material. Maximum apparent reaction velocity (V(max)) and Michaelis-Menten constant (K(m)) for the formation of 7,4'-dihydroxyflavone were 32.5 nmol/g protein/min and 128 microM, respectively. After correction for protein binding (free fraction = 0.84), the apparent intrinsic clearance (CL(int)) for 7,4'-dihydroxyflavone formation was 0.3 ml/g/min. Liquiritigenin was almost exclusively metabolized by CYP3A enzymes. Comparison of liquiritigenin metabolism in human liver microsomes isolated from 16 individuals showed 9.5-fold variability in metabolite formation (3.4-32.2 nmol/g protein/min). An estrogen receptor luciferase assay indicated that the metabolite was a 3-fold more potent activator of the estrogen receptor beta than the parent compound and did not activate the estrogen receptor alpha.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liquiritigenin Attenuates Alzheimer’s-Like Neuropathology in an Amyloid Protein Precursor Transgenic Mouse Model and the Underlying Mechanisms

Estrogen plays a key regulatory role in a number of biological processes and, in addition to its classic function as a sex hormone, it has been linked to neurodegenerative diseases, including Alzheimer's disease (AD) (Wickelgren, 1997; Brann et al., 2007; Zhang et al., 2007). However, long-term compliance with estrogen therapy is often estimated to be no more than 15%–40%, due to its undesirabl...

متن کامل

Drug and Cell Type-Specific Regulation of Genes with Different Classes of Estrogen Receptor β-Selective Agonists

Estrogens produce biological effects by interacting with two estrogen receptors, ERalpha and ERbeta. Drugs that selectively target ERalpha or ERbeta might be safer for conditions that have been traditionally treated with non-selective estrogens. Several synthetic and natural ERbeta-selective compounds have been identified. One class of ERbeta-selective agonists is represented by ERB-041 (WAY-20...

متن کامل

MF101: a multi-component botanical selective estrogen receptor beta modulator for the treatment of menopausal vasomotor symptoms.

INTRODUCTION The Women's Health Initiative Estrogen Plus Progestin clinical trial demonstrated the risks exceeded the benefits which have led to a decline in menopausal hormone therapy (MHT) by greater than 50%. MHT use was initiated long before there was a significant understanding of the molecular mechanisms of estrogens. It has become clear that the problem with the current estrogens in MHT ...

متن کامل

Selective activation of estrogen receptor-beta transcriptional pathways by an herbal extract.

Novel estrogenic therapies are needed that ameliorate menopausal symptoms and have the bone-sparing effects of endogenous estrogens but do not promote breast or uterine cancer. Recent evidence suggests that selective activation of the estrogen receptor (ER)-beta subtype inhibits breast cancer cell proliferation. To establish whether ERbeta-selective ligands represent a viable approach to improv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 36 11  شماره 

صفحات  -

تاریخ انتشار 2008